Spark: Difference between revisions

From UFRC
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:Software]][[Category:spark]]
[[Category:Software]][[Category:Utility]]
{|<!--CONFIGURATION: REQUIRED-->
{|<!--CONFIGURATION: REQUIRED-->
|{{#vardefine:app|spark}}
|{{#vardefine:app|spark}}
Line 43: Line 43:
It is assumed that spark-local-cluster.sh is the file name of the SLURM job script for one-worker node Spark cluster in this section.
It is assumed that spark-local-cluster.sh is the file name of the SLURM job script for one-worker node Spark cluster in this section.
Set SLURM parameters for Spark cluster. spark-local-cluster.sh is available on "Spark_Job_Scripts" page below.  
Set SLURM parameters for Spark cluster. spark-local-cluster.sh is available on "Spark_Job_Scripts" page below.  
<source lang=bash>
<pre>
  #!/bin/bash
  #!/bin/bash
  #filename: spark-local-cluster.sh
  #filename: spark-local-cluster.sh
Line 78: Line 78:
  ## for starting spark worker
  ## for starting spark worker
  $SPARK_HOME/sbin/start-slave.sh spark://$SPARK_MASTER_NODE:$SPARK_MASTER_PORT
  $SPARK_HOME/sbin/start-slave.sh spark://$SPARK_MASTER_NODE:$SPARK_MASTER_PORT
</source>
</pre>


Submit the SLURM job script to HiperGator
Submit the SLURM job script to HiperGator
Line 177: Line 177:
<!--Job Scripts-->
<!--Job Scripts-->
{{#if: {{#var: job}}|==Job Script Examples==
{{#if: {{#var: job}}|==Job Script Examples==
See the [[{{PAGENAME}}_Job_Scripts]] page for {{#var: app}} Job script examples.
<div class="mw-collapsible mw-collapsed" style="width:70%; padding: 5px; border: 1px solid gray;">
''Expand this section to view spark-local-cluster.sh''
<div class="mw-collapsible-content" style="padding: 5px;">
<source lang=bash>
#!/bin/bash
#filename: spark-local-cluster.sh
 
#SBATCH --job-name=spark_cluster
#SBATCH --nodes=1 # nodes allocated to the job
#SBATCH --cpus-per-task=16 # the number of CPUs allocated per task
#SBATCH --exclusive # not sharing of allocated nodes with other running jobs
#SBATCH --time=03:00:00
#SBATCH --output=spark_cluster.log
#SBATCH --error=spark_cluster.err
 
###SBATCH --ntasks= # tasks to be created for the job
###SBATCH --ntasks-per-core= # max number of tasks per allocated core
###SBATCH --ntasks-per-node= # max number of tasks per allocated node
###SBATCH --mail-type=END,FAIL
###SBATCH --mail-user=<yourID>@ufl.edu
 
module load spark
### Set Spark variables
export SPARK_LOCAL_DIRS=$HOME/spark/tmp
export SPARK_WORKER_DIR=$SPARK_LOCAL_DIRS
export SPARK_WORKER_CORES=$SLURM_CPUS_PER_TASK
export SPARK_MASTER_PORT=7077
export SPARK_MASTER_WEBUI_PORT=8080
export SPARK_NO_DAEMONIZE=true
export SPARK_LOG_DIR=$SPARK_LOCAL_DIRS
#export SPARK_CONF_DIR=$SPARK_LOCAL_DIRS
mkdir -p $SPARK_LOCAL_DIRS
 
MASTER_HOST=$(scontrol show hostname $SLURM_NODELIST | head -n 1)
export SPARK_MASTER_NODE=$(host $MASTER_HOST | head -1 | cut -d ' ' -f 4)
export MAX_SLAVES=$(expr $SLURM_JOB_NUM_NODES - 1)
 
# start master
$SPARK_HOME/sbin/start-master.sh &
 
# start workers
# use spark defaults for worker resources (all mem -1 GB, all cores) since using exclusive
 
$SPARK_HOME/sbin/start-slave.sh spark://$SPARK_MASTER_NODE:$SPARK_MASTER_PORT
</source>
</div>
</div>
<div class="mw-collapsible mw-collapsed" style="width:70%; padding: 5px; border: 1px solid gray;">
''Expand this section to view pi_with_pythonstartup.py''
<div class="mw-collapsible-content" style="padding: 5px;">
<source lang=python>
from operator import add
from random import random
 
partitions =10
n = 100000 * partitions
 
def f(_):
    x = random() * 2 - 1
    y = random() * 2 - 1
    return 1 if x ** 2 + y ** 2 <= 1 else 0
 
count = sc.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
print("Pi is roughly %f" % (4.0 * count / n))
</source>
</div>
</div>
|}}
|}}
<!--Policy-->
<!--Policy-->

Latest revision as of 22:01, 15 December 2022

Description

spark website  

Apache Spark is a fast and general-purpose cluster computing system. It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming.

Environment Modules

Run module spider spark to find out what environment modules are available for this application.

System Variables

  • HPC_SPARK_DIR - installation directory
  • HPC_SPARK_BIN - executable directory
  • HPC_SPARK_SLURM - SLURM job script examples
  • SPARK_HOME - examples directory

Running Spark on HiperGator

To run your Spark jobs on HiperGator, two separate steps are required:

  1. Create a Spark cluster on HiperGator via SLURM. This section "Spark Cluster on HiPerGator" below shows a simple example how to create a Spark cluster on HiperGator.
  2. Submit your job to your Spark cluster. You can do this either interactively at the command line ("Spark Interactive Job" section below) or by submitting a a batch job ("Spark Batch Job" section below)

For details about running Spark jobs on HiPerGator, please refer to Spark Workshop. For Spark parameters used in this section, please refer to Spark's homepage.

Spark cluster on HiperGator

Expand this section to view instructions for creating a spark cluster in HiperGator.

Spark interactive job

Expand this section to view instructions for starting preset applications without a job script.

Spark batch job

Expand this section to view instructions for starting preset applications without a job script.


Job Script Examples

Expand this section to view spark-local-cluster.sh

Expand this section to view pi_with_pythonstartup.py