Difference between revisions of "SignalP"

From UFRC
Jump to navigation Jump to search
 
Line 2: Line 2:
 
{|<!--CONFIGURATION: REQUIRED-->
 
{|<!--CONFIGURATION: REQUIRED-->
 
|{{#vardefine:app|signalp}}
 
|{{#vardefine:app|signalp}}
|{{#vardefine:url|http://www.cbs.dtu.dk/services/SignalP/}}
+
|{{#vardefine:url|https://services.healthtech.dtu.dk/services/SignalP-6.0/}}
 
<!--CONFIGURATION: OPTIONAL (|1}} means it's ON)-->
 
<!--CONFIGURATION: OPTIONAL (|1}} means it's ON)-->
 
|{{#vardefine:conf|}}          <!--CONFIGURATION-->
 
|{{#vardefine:conf|}}          <!--CONFIGURATION-->
Line 18: Line 18:
 
{{App_Description|app={{#var:app}}|url={{#var:url}}|name={{#var:app}}}}|}}
 
{{App_Description|app={{#var:app}}|url={{#var:url}}|name={{#var:app}}}}|}}
  
SignalP 4.1 predicts the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms: Gram-positive prokaryotes, Gram-negative prokaryotes, and eukaryotes. The method incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide prediction based on a combination of several artificial neural networks.
+
SignalP predicts the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms: Gram-positive prokaryotes, Gram-negative prokaryotes, and eukaryotes. The method incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide prediction based on a combination of several artificial neural networks.
  
 
<!--Modules-->
 
<!--Modules-->
Line 25: Line 25:
 
==System Variables==
 
==System Variables==
 
* HPC_{{uc:{{#var:app}}}}_DIR - installation directory
 
* HPC_{{uc:{{#var:app}}}}_DIR - installation directory
 +
* HPC_{{uc:{{#var:app}}}}_BIN - executable directory
 +
* HPC_{{uc:{{#var:app}}}}_DOC - documentation directory
 +
* HPC_{{uc:{{#var:app}}}}_EXE - examples directory
 +
 
<!--Configuration-->
 
<!--Configuration-->
 
{{#if: {{#var: conf}}|==Configuration==
 
{{#if: {{#var: conf}}|==Configuration==
Line 58: Line 62:
 
If you publish research that uses {{#var:app}} you have to cite it as follows:
 
If you publish research that uses {{#var:app}} you have to cite it as follows:
  
[http://www.nature.com/nmeth/journal/v8/n10/full/nmeth.1701.html SignalP 4.0: discriminating signal peptides from transmembrane regions Thomas Nordahl Petersen, Søren Brunak, Gunnar von Heijne & Henrik Nielsen Nature Methods, 8:785-786, 2011]
+
[https://www.nature.com/articles/s41587-021-01156-3 Teufel, F., Almagro Armenteros, J.J., Johansen, A.R. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40, 1023–1025 (2022). https://doi.org/10.1038/s41587-021-01156-3]
  
 
|}}
 
|}}

Latest revision as of 21:10, 10 April 2024

Description

signalp website  

SignalP predicts the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms: Gram-positive prokaryotes, Gram-negative prokaryotes, and eukaryotes. The method incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide prediction based on a combination of several artificial neural networks.

Environment Modules

Run module spider signalp to find out what environment modules are available for this application.

System Variables

  • HPC_SIGNALP_DIR - installation directory
  • HPC_SIGNALP_BIN - executable directory
  • HPC_SIGNALP_DOC - documentation directory
  • HPC_SIGNALP_EXE - examples directory


Additional Information

Note
On HiPerGator signalp code has been changed to create a temporary directory 'tmp' inside the current working directory to prevent signalp from filling up memory disks on HiPerGator2 diskless nodes. You will have to clean up the 'tmp' directory from the job directory after the job or as the last action in the job script to recover the space used by the analysis.



Citation

If you publish research that uses signalp you have to cite it as follows:

Teufel, F., Almagro Armenteros, J.J., Johansen, A.R. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40, 1023–1025 (2022). https://doi.org/10.1038/s41587-021-01156-3