Difference between revisions of "FlairNLP"
Line 1: | Line 1: | ||
− | [[Category:Software]][[Category:Data Visualization]][[Category: | + | [[Category:Software]][[Category:Data Visualization]][[Category:NLP]] |
{|<!--CONFIGURATION: REQUIRED--> | {|<!--CONFIGURATION: REQUIRED--> | ||
|{{#vardefine:app|flairNLP}} | |{{#vardefine:app|flairNLP}} |
Revision as of 17:00, 1 June 2022
Description
A very simple framework for state-of-the-art Natural Language Processing (NLP).
Flair is:
A powerful NLP library. Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), part-of-speech tagging (PoS), special support for biomedical data, sense disambiguation and classification, with support for a rapidly growing number of languages.
A text embedding library. Flair has simple interfaces that allow you to use and combine different word and document embeddings, including our proposed Flair embeddings, BERT embeddings and ELMo embeddings.
A PyTorch NLP framework. Our framework builds directly on PyTorch, making it easy to train your own models and experiment with new approaches using Flair embeddings and classes.
Environment Modules
Run module spider flairNLP
to find out what environment modules are available for this application.
System Variables
- HPC_FLAIRNLP_DIR - installation directory
Citation
If you publish research that uses flairNLP you have to cite it as follows:
Please cite the following paper when using Flair embeddings
If you use the Flair framework for your experiments, please cite this paper
If you use our new "FLERT" models or approach, please cite this paper
If you use our TARS approach for few-shot and zero-shot learning, please cite this paper