Nvidia CUDA Toolkit: Difference between revisions

From UFRC
Jump to navigation Jump to search
m Text replacement - "#uppercase" to "uc"
No edit summary
Line 19: Line 19:
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding broad-ranging uses for GPU computing with CUDA.
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding broad-ranging uses for GPU computing with CUDA.
<!--Modules-->
<!--Modules-->
==Required Modules==
==Environment Modules==
 
Use the 'module avail' command after loading a cuda environment module to see the available module trees or see which compiler and openmpi modules require the cuda module to be loaded.
 
=== For single task, non MPI programs===
 
module load cuda/10.0.130 intel/2018.1.163
 
or  
module load cuda/10.0.130  gcc/7.3.0
 
===For MPI programs ===
 
module load cuda/10.0.130 intel/2018.1.163 openmpi/4.0.0


==System Variables==
==System Variables==

Revision as of 21:06, 2 August 2021

Description

cuda website  
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding broad-ranging uses for GPU computing with CUDA.

Environment Modules

Use the 'module avail' command after loading a cuda environment module to see the available module trees or see which compiler and openmpi modules require the cuda module to be loaded.

System Variables

  • HPC_CUDA_DIR
  • HPC_CUDA_BIN
  • HPC_CUDA_INC
  • HPC_CUDA_LIB

Program Development

Environment

For CUDA development please load the "cuda" module. Doing so will ensure that your environment is set up correctly for the use of the CUDA compiler, header files, and libraries. Currently cuda/9.2.88 and cuda/10.0.130 are the only versions supported on hipergator.

$ module spider cuda
-------------------------------------------------------------
cuda:
-------------------------------------------------------------
    Description:
      NVIDIA CUDA Toolkit

     Versions:
        cuda/9.2.88
        cuda/10.0.130
        

--------------------------------------------------------------------------------------------------------------------
  For detailed information about a specific "cuda" module (including how to load the modules) use the module full name.
  For example:

     $ module spider cuda/10.0.130
--------------------------------------------------------------------------------------------------------------------

$ module load cuda/10.0.130

$ which nvcc
/apps/compilers/cuda/10.0.130/bin/nvcc

$ printenv | grep CUDA
HPC_CUDA_LIB=/apps/compilers/cuda/10.0.130/lib64
HPC_CUDA_DIR=/apps/compilers/cuda/10.0.130
HPC_CUDA_BIN=/apps/compilers/cuda/10.0.130/bin
HPC_CUDA_INC=/apps/compilers/cuda/10.0.130/include
UFRC_FAMILY_CUDA_VERSION=10.0.130


Selecting CUDA Arch Flags

When compiling with NVCC, you need to specify the Nvidia architecture that the CUDA files will be compiled for. Please refer to GPU Feature List for CUDA naming scheme sm_xy where x denotes the GPU generation and y denotes the version. The table below lists the SM flags for the three types of GPUs on HiPerGator.

SM Nvidia Cards
SM_37 Tesla K80
SM_61 GeForce GTX 1080Ti
SM_75 GeForce RTX 2080Ti

Sample GPU Batch Job Scripts

SLURM Job Scripts

See the Example_SLURM-GPU-Job-Scripts page for an example.