Difference between revisions of "Nvidia CUDA Toolkit"
Line 42: | Line 42: | ||
!- | !- | ||
|M2070||8||1||Intel E5620||24 GB||N/A|| | |M2070||8||1||Intel E5620||24 GB||N/A|| | ||
+ | !- | ||
|} | |} | ||
Revision as of 13:16, 23 September 2013
Description
cuda website
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding broad-ranging uses for GPU computing with CUDA.
Required Modules
cuda
System Variables
- HPC_{{#uppercase:cuda}}_DIR
- HPC_{{#uppercase:cuda}}_BIN
- HPC_{{#uppercase:cuda}}_INC
- HPC_{{#uppercase:cuda}}_LIB
Nvidia GPUs
Research Computing has a significant investment in GPU-enabled servers. Each supports from two to eight Nvidia GPUs that range from the earlier S1070s to the more recent Kepler K20s (see table below).
GPU | Quantity | Host Quantity | Host Architecture | Host Memory | Host Interconnect | Notes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1070 | 8 | 4 | Intel E5462 | 16 GB | DDR IB | ||||||||||
M2070 | 8 | 4 | Intel E5675 | 24 GB | QDR IB | - | M2070 | 8 | 1 | Intel E5620 | 24 GB | N/A | - |
Servers | Processor | Cores | Memory | GPUs | IB | Notes |
---|---|---|---|---|---|---|
4 | 1 Intel E5462 (2.8 GHz) | 4 | 16 GB | 2 | DDR | 1 |
4 | 1 Intel E5675 (3.0GHz) | 6 | 24 GB | 2 | QDR | 3,4 |
10 | 2 Intel E5-2643 (3.3 GHz) | 8 | 64 GB | 4 | FDR | 2 |
16 | 2 AMD Opteron 6220 (3.0 GHz) | 16 | 32 GB | 2 | QDR | 2 |
1 | 2 Intel E5620 (2.4GHz) | 8 | 24 GB | 8 | N/A | 3 |
- S1070 GPUs, 4GB Device RAM
- M2090 GPUs, 6GB Device RAM
- M2070 GPUs, 6GB Device RAM
- K20c GPUs, 5GB Device RAM
PBS Script Examples
See the Nvidia CUDA Toolkit_PBS page for cuda PBS script examples.
Usage Policy
Interactive Use
If you need interactive access to a gpu for development and testing you may do so by requesting an interactive session through the batch system.
In order to gain interactive access to a GPU server you should run similar to the one that follows.
qsub -I -l nodes=1:gpus=1:tesla,walltime=01:00:00 -q gpu
To gain access to one of the Fermi-class GPUs, you can make a similar request but specify the "fermi" attribute in your resource request as below.
qsub -I -l nodes=1:gpus=1:fermi,walltime=01:00:00 -q gpu
If a gpu is available, you will get a prompt on one of the nodes within a minute or two. Otherwise, you will have to wait or try another time. If you choose to wait, you will be connected when a gpu is available. The default walltime limit for the gpu queue is 10 minutes. You should request the amount of time you need but be sure to log out and end your session when you are finished so that the GPU will be available to others.
If your work needs both GPUs attached to the same node, you would run the following command instead.
qsub -I -l nodes=1:gpus=2,walltime=01:00:00 -q gpu
If you need to request a particular machine, say tesla1, you would use the following qsub command.
qsub -I -l nodes=tesla1:gpus=1,walltime=01:00:00 -q gpu
Batch Jobs
The process is much the same for batch jobs. To access a node with an M2090, you can add the following to your submission script.
#PBS -q gpu #PBS -l nodes=1:gpus=1:M2090 #PBS -l walltime=1:00:00
To access a node with an M2070 GPU, you can add the following to your submission script.
#PBS -q gpu #PBS -l nodes=1:gpus=1:m2070 #PBS -l walltime=1:00:00
Exclusive Mode
The GPUs are configured to run in exclusive mode. This means that the gpu driver will only allow one process at a time to access the GPU. If GPU 0 is in use and your application tries to use it, it will simply block. If your application does not call cudaSetDevice(), the CUDA runtime should assign it to a free GPU. Since everyone will be accessing the GPUs through the batch system, there should be no over-subscription of the GPUs.
Performance
Environment
For CUDA development please load the "cuda" module. Doing so will ensure that your environment is set up correctly for the use of the CUDA compiler, header files, and libraries.
$ module spider cuda
Rebuilding cache, please wait ... (not written to file) done
Description:
NVIDIA CUDA Toolkit
Versions:
cuda/4.2
cuda/5.5
$ module load cuda/5.5
$ which nvcc
/opt/cuda/5.5/bin/nvcc
$ printenv | grep CUDA
HPC_CUDA_LIB=/opt/cuda/5.5/lib64
HPC_CUDA_DIR=/opt/cuda/5.5
HPC_CUDA_BIN=/opt/cuda/5.5/bin
HPC_CUDA_INC=/opt/cuda/5.5/include
Example: CUBLAS vs. Optimized BLAS
Note that double-precision linear algebra is a less than ideal application for the GPUs. Still, it is a functional example of using one of the available CUDA runtime libraries.
cuda_bm.c
{{#fileAnchor: cuda_bm.c}} Download raw source of the [{{#fileLink: cuda_bm.c}} cuda_bm.c]
#include <stdio.h>
#include <stdlib.h>
#include <mkl.h>
#include <math.h>
#include <time.h>
#include <cublas.h>
void resuse(char *str);
double timeDiff( struct timespec *t1, struct timespec *t2)
{
double T1, T2;
T2 = (double)t2->tv_sec + (double)t2->tv_nsec / 1.0e9;
T1 = (double)t1->tv_sec - (double)t1->tv_nsec / 1.0e9;
return(T2 - T1);
}
main()
{
int dim = 9100;
int i,j,k;
int status;
double *psa, *psb, *psc;
double *sap, *sbp, *scp;
double *pda, *pdb, *pdc;
double *dap, *dbp, *dcp;
double alpha = 1.0;
double beta = 0.0;
double gflops = 0.0;
float deltaT = 0.0;
double gflopCnt = 2.0 * dim * dim * dim / 1.0e9;
struct timespec t1;
struct timespec t2;
int ptime();
pda = NULL;
pdb = NULL;
pdc = NULL;
psa = (double *) malloc(dim * dim * sizeof(*psa) );
psb = (double *) malloc(dim * dim * sizeof(*psb) );
psc = (double *) malloc(dim * dim * sizeof(*psc) );
printf("Initializing Matrices...");
clock_gettime(CLOCK_MONOTONIC, &t1);
sap = psa;
sbp = psb;
scp = psc;
for (i = 0; i < dim; i++)
for (j = 0; j < dim; j++) {
*sap++ = 1.0;
*sbp++ = 1.0;
*scp++ = 0.0;
}
clock_gettime(CLOCK_MONOTONIC, &t2);
deltaT = timeDiff(&t1, &t2);
printf("Done. Elapsed Time = %6.4f secs\n", deltaT);
fflush(stdout);
printf("Starting parallel DGEMM...");
fflush(stdout);
clock_gettime(CLOCK_MONOTONIC, &t1);
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, dim, dim, dim, alpha, psa, dim, psb, dim, beta, psc, dim);
clock_gettime(CLOCK_MONOTONIC, &t2);
deltaT = timeDiff(&t1, &t2);
printf("Done. Elapsed Time = %6.4f secs\n", deltaT);
printf(" ");
printf("GFlOP Rate = %8.4f\n", gflopCnt/deltaT);
if ( (float) dim - psc[0] > 1.0e-5 ||
(float) dim - psc[dim*dim-1] > 1.0e-5 ) {
printf("Error: Incorrect Results!\n");
printf("C[%2d,%2d] = %10.4f\n", 1,1,psc[0]);
printf("C[%2d,%2d] = %10.4f\n", dim,dim,psc[dim*dim-1]);
}
/* Initialize CUDA */
printf("Initializing CUDA...");
status = cublasInit();
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "!!!! CUBLAS initialization error\n");
return EXIT_FAILURE;
}
printf("Done.\n");
/* Re-initialize the matrices */
printf("Re-initializing Matrices...");
clock_gettime(CLOCK_MONOTONIC, &t1);
sap = psa;
sbp = psb;
scp = psc;
for (i = 0; i < dim; i++) {
for (j = 0; j < dim; j++) {
*sap++ = 1.0;
*sbp++ = 1.0;
*scp++ = 0.0;
}
}
clock_gettime(CLOCK_MONOTONIC, &t2);
deltaT = timeDiff(&t1, &t2);
printf("Done. Elapsed Time = %6.4f secs\n", deltaT);
fflush(stdout);
/* Allocate device memory for the matrices */
printf("Starting CUDA DGEMM...");
clock_gettime(CLOCK_MONOTONIC, &t1);
status = cublasAlloc(dim*dim, sizeof(*pda), (void**) &pda);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "!!!! device memory allocation error (A)\n");
return EXIT_FAILURE;
}
status = cublasAlloc(dim*dim, sizeof(*pdb), (void**) &pdb);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "!!!! device memory allocation error (B)\n");
return EXIT_FAILURE;
}
status = cublasAlloc(dim*dim, sizeof(*pdc), (void**) &pdc);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "!!!! device memory allocation error (C)\n");
return EXIT_FAILURE;
}
/* Initialize the device matrices with the host matrices */
status = cublasSetVector(dim*dim, sizeof(*psa), psa, 1, pda, 1);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "!!!! device access error (write A)\n");
return EXIT_FAILURE;
}
status = cublasSetVector(dim*dim, sizeof(*pdb), psb, 1, pdb, 1);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "!!!! device access error (write B)\n");
return EXIT_FAILURE;
}
status = cublasSetVector(dim*dim, sizeof(*psc), psc, 1, pdc, 1);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "!!!! device access error (write C)\n");
return EXIT_FAILURE;
}
/* Clear last error */
cublasGetError();
/* Performs operation using cublas */
cublasDgemm('n', 'n', dim, dim, dim, alpha, pda, dim, pdb, dim, beta, pdc, dim);
status = cublasGetError();
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "!!!! kernel execution error.\n");
return EXIT_FAILURE;
}
/* Read the result back */
status = cublasGetVector(dim*dim, sizeof(*psc), pdc, 1, psc, 1);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf (stderr, "!!!! device access error (read C)\n");
return EXIT_FAILURE;
}
clock_gettime(CLOCK_MONOTONIC, &t2);
deltaT = timeDiff(&t1, &t2);
printf("Done. Elapsed Time = %6.4f secs\n", deltaT);
printf(" ");
printf("GFlOP Rate = %8.4f\n", gflopCnt/deltaT);
if ( (float) dim - psc[0] > 1.0e-5 ||
(float) dim - psc[dim*dim-1] > 1.0e-5 ) {
printf("Error: Incorrect Results!\n");
printf("C[%2d,%2d] = %10.4f\n", 1,1,psc[0]);
printf("C[%2d,%2d] = %10.4f\n", dim,dim,psc[dim*dim-1]);
}
}
resuse.c
{{#fileAnchor: resuse.c}} Download raw source of the [{{#fileLink: resuse.c}} resuse.c]
/*---------------------------------------------------------------------------*
* resuse.c *
* *
* resuse_(desc) *
* char *desc; *
*---------------------------------------------------------------------------*
* This routine makes use of the getrusage system call to collect and *
* display resource utilization from one point in a program to another. *
* Thus, it works somewhat like a stopwatch in the since that the first call *
* initializes, or starts, the resource collection over the interval. The *
* second call stops the collection and displays the results accumulated *
* since the previous call. This means, of course, that two calls are *
* required for each section of code to be monitored. *
*
* The underscore at the end of the routine name is there so that the routine*
* may be called as an integer valued FORTRAN function name RESUSE(), under *
* both the SunOS and Ultrix f77 compilers. AIX inter-language calling *
* conventions are different so the routine must be referenced as RESUSE_() *
* under AIX (RISC/6000) FORTRAN (xlf).
*
* From a FORTRAN routine:
*
* INT = RESUSE("Some String")
*
* fortran code to be timed
*
* INT = RESUSE("Some String")
*
* Just ignore the returned value.
*---------------------------------------------------------------------------*/
#include <sys/time.h>
#include <sys/resource.h>
static int first_call = 1;
static struct rusage initial;
void resuse(str)
char *str;
{
int pgminor, pgmajor, nswap, nvcsw, nivcsw;
int inblock, oublock;
struct rusage final;
float usr, sys, secs;
getrusage(RUSAGE_SELF, &final);
if ( ! first_call )
{
secs = final.ru_utime.tv_sec + final.ru_utime.tv_usec / 1000000.0;
usr = secs;
secs = initial.ru_utime.tv_sec + initial.ru_utime.tv_usec / 1000000.0;
usr = usr - secs;
secs = final.ru_stime.tv_sec + final.ru_stime.tv_usec / 1000000.0;
sys = secs;
secs = initial.ru_stime.tv_sec + initial.ru_stime.tv_usec / 1000000.0;
sys = sys - secs;
pgminor = final.ru_minflt - initial.ru_minflt;
pgmajor = final.ru_majflt - initial.ru_majflt;
nswap = final.ru_nswap - initial.ru_nswap;
inblock = final.ru_inblock - initial.ru_inblock;
oublock = final.ru_oublock - initial.ru_oublock;
nvcsw = final.ru_nvcsw - initial.ru_nvcsw ;
nivcsw = final.ru_nivcsw - initial.ru_nivcsw ;
printf("=============================================================\n");
printf("%s: Resource Usage Data...\n", str);
printf("-------------------------------------------------------------\n");
printf("User Time (secs) : %10.3f\n", usr);
printf("System Time (secs) : %10.3f\n", sys);
printf("Total Time (secs) : %10.3f\n", usr + sys);
printf("Minor Page Faults : %10d\n", pgminor);
printf("Major Page Faults : %10d\n", pgmajor);
printf("Swap Count : %10d\n", nswap);
printf("Voluntary Context Switches : %10d\n", nvcsw);
printf("Involuntary Context Switches: %10d\n", nivcsw);
printf("Block Input Operations : %10d\n", inblock);
printf("Block Output Operations : %10d\n", oublock);
printf("=============================================================\n");
}
else
{
printf("=============================================================\n");
printf("%s: Collecting Resource Usage Data\n", str);
printf("=============================================================\n");
}
first_call = !first_call;
initial = final;
return;
}
Makefile for Building cuda_bm
{{#fileAnchor: Makefile}} Download raw source of the [{{#fileLink: Makefile}} Makefile]
#
# Makefile
#
CC = icc
CFLAGS = -O3 -openmp
MKL_INCS = -I$(HPC_MKL_INC)
MKL_LIBS = -L$(HPC_MKL_LIB) -lmkl_intel_lp64 -lmkl_sequential -lmkl_core
MKL_MP_LIBS = -L$(HPC_MKL_LIB) -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core
CUDA_INCS = -I$(HPC_CUDA_INC)
CUDA_LIBS = -L$(HPC_CUDA_LIB) -lcublas
LIBS = $(MKL_MP_LIBS) $(CUDA_LIBS) -lpthread -lrt
INCS = $(MKL_INCS) $(CUDA_INCS)
bm: bm.o ptime.o resuse.o
$(CC) $(CFLAGS) -o bm bm.o ptime.o resuse.o $(LIBS)
cuda_bm: cuda_bm.c resuse.o
$(CC) $(CFLAGS) $(INCS) -o cuda_bm cuda_bm.c resuse.o $(LIBS)
cuda_sp_bm: cuda_sp_bm.c resuse.o
$(CC) $(CFLAGS) $(INCS) -o cuda_sp_bm cuda_sp_bm.c resuse.o $(LIBS)
clean:
rm -f *.o core.* bm cuda_bm
Compiling and Linking
Download the above three files into a single directory. Then type:
[taylor@c11a-s15 Bench]$ module load intel/2013 [taylor@c11a-s15 Bench]$ module load cuda/5.5 [taylor@c11a-s15 Bench]$ make clean rm -f *.o core.* bm cuda_bm [taylor@c11a-s15 Bench]$ make cuda_bm icc -O3 -openmp -I/opt/intel/composer_xe_2013_sp1.0.080/mkl/include -c -o resuse.o resuse.c icc -O3 -openmp -I/opt/intel/composer_xe_2013_sp1.0.080/mkl/include -I/opt/cuda/5.5/include -I/opt/intel/composer_xe_2013_sp1.0.080/mkl/include -o cuda_bm cuda_bm.c resuse.o -L/opt/cuda/5.5/lib64 -lcublas -L/opt/intel/composer_xe_2013_sp1.0.080/mkl/lib/intel64 -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -lpthread -lrt
Output
# Host: Single, Hex-Core Intel 5675 @ 3.0 GHz # GPU: Kepler K20c
$ export OMP_NUM_THREADS=4 $ ./cuda_bm Initializing Matrices...Done. Elapsed Time = 2.3768 secs Starting parallel DGEMM...Done. Elapsed Time = 33.2302 secs GFlOP Rate = 45.3546 Initializing CUDA...Done. Re-initializing Matrices...Done. Elapsed Time = 2.1733 secs Starting CUDA DGEMM...Done. Elapsed Time = 2.3522 secs GFlOP Rate = 640.7458