Monai Usage: Difference between revisions

From UFRC
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 8: Line 8:
==MONAI label==
==MONAI label==
NGC container usage:
NGC container usage:
#Server:
=== 1. Server - to start the server as a slurm job: ===
#*To start the server as a slurm job:
*Load modules:
#**<pre>ml purge</pre>
  ml purge
#**<pre>ml ngc-monailabel/<version></pre>
  ml ngc-monailabel/<version>
#**Copy to your directory the file:
*Copy to your directory the file:
#***<pre>/apps/nvidia/containers/monai/start_monai_server_readonly.sh</pre>
  /apps/nvidia/containers/monai/start_monai_server_readonly.sh
#**Copy these directories to a place you own, e.g.
*Copy e.g. these directories to a place you own (may vary by use case):
#***<pre>cp -r /apps/nvidia/containers/monai/apps/deepedit <my_place></pre>
  cp -r /apps/nvidia/containers/monai/apps/deepedit <my_place>
#***<pre>cp -r /apps/nvidia/containers/monai/datasets/Task09_Spleen <my_place></pre>
  cp -r /apps/nvidia/containers/monai/datasets/Task09_Spleen <my_place>
#**Modify the start_monai_server_readonly.sh line to read:
*Modify the start_monai_server_readonly.sh line to read:
#***<pre>singularity exec -B /apps/nvidia/containers/monai /apps/nvidia/containers/monai/monailabel/ monailabel start_server --app <my_place>/deepedit --studies <my_place>/Task09_Spleen/imagesTr</pre>
  singularity exec -B /apps/nvidia/containers/monai /apps/nvidia/containers/monai/monailabel/ monailabel start_server --app <my_place>/deepedit --studies <my_place>/Task09_Spleen/imagesTr
#**<pre>sbatch start_monai_server_readonly.sh</pre>
  or, for a newer version e.g. (the apps/... and datasets/... directories may be different)
#*Note server address from job output: used in next step
  singularity exec -B /apps/nvidia/containers/monai /apps/nvidia/containers/monai/monailabel.0.6.0/0.6.0 monailabel start_server --app <my_place>/deepedit --studies <my_place>/Task09_Spleen/imagesTr
#*
*Start server as a batch job:
#3DSlicer client
  sbatch start_monai_server_readonly.sh
#*Start Open On Demand (OOD) session
*Note server address from job output: used in next step
#*Start Console in hwgui with 1 GPU: gpu:geforce:1
=== 2. 3DSlicer client ===
#*In console: load & start Slicer
*Start Open On Demand (OOD) session
#**<pre>ml qt/5.15.4 slicer/4.13.0</pre>
*Start Console in hwgui with 1 GPU: gpu:geforce:1
#**<pre>vglrun -d :0.$CUDA_VISIBLE_DEVICES Slicer</pre>
*In console: load & start Slicer
#*In Slicer GUI:
  ml qt/5.15.4 slicer/4.13.0
#**Select module: Active Learning -> MONAILabel
  vglrun -d :0.$CUDA_VISIBLE_DEVICES Slicer
#**Fill in server address, e.g.: http://c1007a-s17:8000/
*In Slicer GUI:
#**Click on refresh button next to server address
**Select module: Active Learning -> MONAILabel
#**Load Next Sample
**Fill in server address, e.g.: http://c1007a-s17:8000/
#*You are good to go! Enjoy!
**Click on refresh button next to server address
**Load Next Sample
*You are good to go! Enjoy!

Latest revision as of 16:41, 2 August 2023

Back to Monai

MONAI core

NGC container usage:

ml purge
ml ngc-monai/<version>
python <your__python_script>

MONAI label

NGC container usage:

1. Server - to start the server as a slurm job:

  • Load modules:
  ml purge
  ml ngc-monailabel/<version>
  • Copy to your directory the file:
  /apps/nvidia/containers/monai/start_monai_server_readonly.sh
  • Copy e.g. these directories to a place you own (may vary by use case):
  cp -r /apps/nvidia/containers/monai/apps/deepedit <my_place>
  cp -r /apps/nvidia/containers/monai/datasets/Task09_Spleen <my_place>
  • Modify the start_monai_server_readonly.sh line to read:
  singularity exec -B /apps/nvidia/containers/monai /apps/nvidia/containers/monai/monailabel/ monailabel start_server --app <my_place>/deepedit --studies <my_place>/Task09_Spleen/imagesTr
  or, for a newer version e.g. (the apps/... and datasets/... directories may be different)
  singularity exec -B /apps/nvidia/containers/monai /apps/nvidia/containers/monai/monailabel.0.6.0/0.6.0 monailabel start_server --app <my_place>/deepedit --studies <my_place>/Task09_Spleen/imagesTr
  • Start server as a batch job:
 sbatch start_monai_server_readonly.sh
  • Note server address from job output: used in next step

2. 3DSlicer client

  • Start Open On Demand (OOD) session
  • Start Console in hwgui with 1 GPU: gpu:geforce:1
  • In console: load & start Slicer
 ml qt/5.15.4 slicer/4.13.0
 vglrun -d :0.$CUDA_VISIBLE_DEVICES Slicer
  • In Slicer GUI:
    • Select module: Active Learning -> MONAILabel
    • Fill in server address, e.g.: http://c1007a-s17:8000/
    • Click on refresh button next to server address
    • Load Next Sample
  • You are good to go! Enjoy!