Difference between revisions of "FlairNLP"

From UFRC
Jump to navigation Jump to search
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:Software]][[Category:Data Visualization]][[Category:NLP]][[Category:Language]]
+
[[Category:Software]][[Category:Machine Learning]]
 
{|<!--CONFIGURATION: REQUIRED-->
 
{|<!--CONFIGURATION: REQUIRED-->
 
|{{#vardefine:app|flairNLP}}
 
|{{#vardefine:app|flairNLP}}
Line 24: Line 24:
 
A powerful NLP library. Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), part-of-speech tagging (PoS), special support for biomedical data, sense disambiguation and classification, with support for a rapidly growing number of languages.
 
A powerful NLP library. Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), part-of-speech tagging (PoS), special support for biomedical data, sense disambiguation and classification, with support for a rapidly growing number of languages.
  
A text embedding library. Flair has simple interfaces that allow you to use and combine different word and document embeddings, including our proposed Flair embeddings, BERT embeddings and ELMo embeddings.
+
A text embedding library. Flair has simple interfaces that allow you to use and combine different word and document embeddings, including the proposed Flair embeddings, BERT embeddings and ELMo embeddings.
  
A PyTorch NLP framework. Our framework builds directly on PyTorch, making it easy to train your own models and experiment with new approaches using Flair embeddings and classes.
+
A PyTorch NLP framework. The framework builds directly on PyTorch, making it easy to train your own models and experiment with new approaches using Flair embeddings and classes.
  
 
<!--Modules-->
 
<!--Modules-->

Latest revision as of 15:42, 25 August 2022

Description

flairNLP website  

A very simple framework for state-of-the-art Natural Language Processing (NLP).

Flair is:

A powerful NLP library. Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), part-of-speech tagging (PoS), special support for biomedical data, sense disambiguation and classification, with support for a rapidly growing number of languages.

A text embedding library. Flair has simple interfaces that allow you to use and combine different word and document embeddings, including the proposed Flair embeddings, BERT embeddings and ELMo embeddings.

A PyTorch NLP framework. The framework builds directly on PyTorch, making it easy to train your own models and experiment with new approaches using Flair embeddings and classes.

Environment Modules

Run module spider flairNLP to find out what environment modules are available for this application.

System Variables

  • HPC_FLAIRNLP_DIR - installation directory




Citation

If you publish research that uses flairNLP you have to cite it as follows:

Please cite the following paper when using Flair embeddings

If you use the Flair framework for your experiments, please cite this paper

If you use our new "FLERT" models or approach, please cite this paper

If you use our TARS approach for few-shot and zero-shot learning, please cite this paper