Difference between revisions of "Nvidia CUDA Toolkit"

From UFRC
Jump to navigation Jump to search
(updated the currently available cuda versions on hipergator. removed deprecated version not available anymore.)
 
(122 intermediate revisions by 9 users not shown)
Line 1: Line 1:
[[Category:Software]]
+
[[Category:Software]][[Category:Programming]][[Category:Library]][[Category:Graphics]][[Category:GPU]]
 +
{|align=right
 +
  |__TOC__
 +
  |}
 
{|<!--CONFIGURATION: REQUIRED-->
 
{|<!--CONFIGURATION: REQUIRED-->
 
|{{#vardefine:app|cuda}}
 
|{{#vardefine:app|cuda}}
Line 6: Line 9:
 
|{{#vardefine:conf|}}          <!--CONFIGURATION-->
 
|{{#vardefine:conf|}}          <!--CONFIGURATION-->
 
|{{#vardefine:exe|1}}            <!--ADDITIONAL INFO-->
 
|{{#vardefine:exe|1}}            <!--ADDITIONAL INFO-->
|{{#vardefine:pbs|1}}            <!--PBS SCRIPTS-->
+
|{{#vardefine:pbs|1}}            <!--JOB SCRIPTS-->
 
|{{#vardefine:policy|1}}        <!--POLICY-->
 
|{{#vardefine:policy|1}}        <!--POLICY-->
|{{#vardefine:testing|}}       <!--PROFILING-->
+
|{{#vardefine:testing|}}       <!--PROFILING-->
 
|{{#vardefine:faq|}}            <!--FAQ-->
 
|{{#vardefine:faq|}}            <!--FAQ-->
 
|{{#vardefine:citation|}}      <!--CITATION-->
 
|{{#vardefine:citation|}}      <!--CITATION-->
Line 18: Line 21:
 
{{App_Description|app={{#var:app}}|url={{#var:url}}|name={{#var:app}}}}|}}
 
{{App_Description|app={{#var:app}}|url={{#var:url}}|name={{#var:app}}}}|}}
 
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding broad-ranging uses for GPU computing with CUDA.
 
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding broad-ranging uses for GPU computing with CUDA.
 +
 +
See also: [https://help.rc.ufl.edu/doc/GPU_Access GPU Access]
 
<!--Modules-->
 
<!--Modules-->
==Required Modules==
+
==Environment Modules==
cuda
+
Use the 'module avail' command after loading a cuda environment module to see the available module trees or see which compiler and openmpi modules require the cuda module to be loaded.
 +
 
 
==System Variables==
 
==System Variables==
* HPC_{{#uppercase:{{#var:app}}}}_DIR
+
* HPC_{{uc:{{#var:app}}}}_DIR
* HPC_{{#uppercase:{{#var:app}}}}_BIN
+
* HPC_{{uc:{{#var:app}}}}_BIN
* HPC_{{#uppercase:{{#var:app}}}}_INC
+
* HPC_{{uc:{{#var:app}}}}_INC
* HPC_{{#uppercase:{{#var:app}}}}_LIB
+
* HPC_{{uc:{{#var:app}}}}_LIB
 
<!--Configuration-->
 
<!--Configuration-->
 
{{#if: {{#var: conf}}|==Configuration==
 
{{#if: {{#var: conf}}|==Configuration==
Line 31: Line 37:
 
|}}
 
|}}
 
<!--Run-->
 
<!--Run-->
{{#if: {{#var: exe}}|==Additional Information==
+
==Program Development==
Also see [[NVIDIA GPUs]].
 
|}}
 
<!--PBS scripts-->
 
{{#if: {{#var: pbs}}|==PBS Script Examples==
 
See the [[{{PAGENAME}}_PBS]] page for {{#var: app}} PBS script examples.
 
|}}
 
<!--Policy-->
 
{{#if: {{#var: policy}}|==Usage Policy==
 
===Interactive Use===
 
  
If you need interactive access to a gpu for development and testing you may do so by requesting an interactive session through the batch system.
+
===Environment===
 +
For CUDA development please load the "cuda" module.  Doing so will ensure that your environment is set up correctly for the use of the CUDA compiler, header files, and libraries. The cuda versions below are currently supported on hipergator.
 +
<div class="mw-collapsible mw-collapsed" style="width:70%; padding: 5px; border: 1px solid gray;">
 +
''Expand to view example of loading/using cuda.''
 +
<div class="mw-collapsible-content" style="padding: 5px;">
 +
<pre>
 +
$ module spider cuda
 +
-------------------------------------------------------------
 +
cuda:
 +
-------------------------------------------------------------
 +
    Description:
 +
      NVIDIA CUDA Toolkit
  
In order to gain interactive access to a GPU server you should run similar to the one that follows.  
+
    Versions:
 +
        cuda/10.0.130
 +
        cuda/11.0.207
 +
        cuda/11.1.0
 +
        cuda/11.4.3
 +
        cuda/11.6
 +
        cuda/12.2.0
 +
        cuda/12.2.2
 +
        cuda/12.4.1
  
<pre>
+
--------------------------------------------------------------------------------------------------------------------
qsub -I -l nodes=1:gpus=1:tesla,walltime=01:00:00 -q gpu
+
  For detailed information about a specific "cuda" module (including how to load the modules) use the module full name.
</pre>
+
  For example:
  
To gain access to one of the Fermi-class GPUs, you can make a similar request but specify the "fermi" attribute in your resource request as below.
+
    $ module spider cuda/10.0.130
 +
--------------------------------------------------------------------------------------------------------------------
  
<pre>
+
$ module load cuda/10.0.130
qsub -I -l nodes=1:gpus=1:fermi,walltime=01:00:00 -q gpu
 
</pre>
 
  
If a gpu is available, you will get a prompt on one of the nodes within a minute or two.  Otherwise, you will have to wait or try another time.  If you choose to wait, you will be connected when a gpu is available.    The default walltime limit for the gpu queue is 10 minutes. You should request the amount of time you need but be sure to log out and end your session when you are finished so that the GPU will be available to others.
+
$ which nvcc
 +
/apps/compilers/cuda/10.0.130/bin/nvcc
  
If your work needs both GPUs attached to the same node, you would run the following command instead.
+
$ printenv | grep CUDA
 
+
HPC_CUDA_LIB=/apps/compilers/cuda/10.0.130/lib64
<pre>
+
HPC_CUDA_DIR=/apps/compilers/cuda/10.0.130
qsub -I -l nodes=1:gpus=2,walltime=01:00:00 -q gpu
+
HPC_CUDA_BIN=/apps/compilers/cuda/10.0.130/bin
 +
HPC_CUDA_INC=/apps/compilers/cuda/10.0.130/include
 +
UFRC_FAMILY_CUDA_VERSION=10.0.130
 
</pre>
 
</pre>
 +
</div>
 +
</div>
 +
===Selecting CUDA Arch Flags===
 +
When compiling with NVCC, you need to specify the Nvidia architecture that the CUDA files will be compiled for. Please refer to [https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-feature-list GPU Feature List] for CUDA naming scheme sm_xy where x denotes the GPU generation and y denotes the version. The table below lists the SM flags for the three types of GPUs on HiPerGator.
  
If you need to request a particular machine, say ''tesla1'', you would use the following qsub command.
+
{| class="wikitable"
 +
|-
 +
! SM !! Nvidia Cards
 +
|-
 +
| SM_37 || Tesla K80 (No longer available)
 +
|-
 +
| SM_61 || GeForce GTX 1080Ti
 +
|-
 +
| SM_75|| GeForce RTX 2080Ti
 +
|-
 +
| SM_80 || DGX A100
 +
|}
  
<pre>
+
==Sample GPU Batch Job Scripts==
qsub -I -l nodes=tesla1:gpus=1,walltime=01:00:00 -q gpu
 
</pre>
 
===Batch Jobs===
 
  
The process is much the same for batch jobs.  To access a node with an S1070 GPU, you can add the following to your submission script.
 
 
<pre>
 
#PBS -q gpu
 
#PBS -l nodes=1:gpus=1:tesla
 
#PBS -l walltime=1:00:00
 
</pre>
 
  
To access a node with an M2070 GPU, you can add the following to your submission script.
+
See the [[Example_SLURM-GPU-Job-Scripts]] page for an example.
  
<pre>
+
<!--|}}-->
#PBS -q gpu
 
#PBS -l nodes=1:gpus=1:fermi
 
#PBS -l walltime=1:00:00
 
</pre>
 
  
|}}
 
<!--Performance-->
 
{{#if: {{#var: testing}}|==Performance==
 
WRITE_PERFORMANCE_TESTING_RESULTS_HERE
 
|}}
 
 
<!--Faq-->
 
<!--Faq-->
 
{{#if: {{#var: faq}}|==FAQ==
 
{{#if: {{#var: faq}}|==FAQ==
Line 103: Line 117:
 
{{#if: {{#var: installation}}|==Installation==
 
{{#if: {{#var: installation}}|==Installation==
 
See the [[{{PAGENAME}}_Install]] page for {{#var: app}} installation notes.|}}
 
See the [[{{PAGENAME}}_Install]] page for {{#var: app}} installation notes.|}}
<!--Turn the Table of Contents and Edit paragraph links ON/OFF-->
+
<!--Turn the Table of Contents and Edit paragraph links ON/OFF
 
__NOTOC____NOEDITSECTION__
 
__NOTOC____NOEDITSECTION__
 +
-->

Latest revision as of 13:22, 31 May 2024

Description

cuda website  
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding broad-ranging uses for GPU computing with CUDA.

See also: GPU Access

Environment Modules

Use the 'module avail' command after loading a cuda environment module to see the available module trees or see which compiler and openmpi modules require the cuda module to be loaded.

System Variables

  • HPC_CUDA_DIR
  • HPC_CUDA_BIN
  • HPC_CUDA_INC
  • HPC_CUDA_LIB

Program Development

Environment

For CUDA development please load the "cuda" module. Doing so will ensure that your environment is set up correctly for the use of the CUDA compiler, header files, and libraries. The cuda versions below are currently supported on hipergator.

Expand to view example of loading/using cuda.

$ module spider cuda
-------------------------------------------------------------
cuda:
-------------------------------------------------------------
    Description:
      NVIDIA CUDA Toolkit

     Versions:
        cuda/10.0.130
        cuda/11.0.207
        cuda/11.1.0
        cuda/11.4.3
        cuda/11.6
        cuda/12.2.0
        cuda/12.2.2
        cuda/12.4.1

--------------------------------------------------------------------------------------------------------------------
  For detailed information about a specific "cuda" module (including how to load the modules) use the module full name.
  For example:

     $ module spider cuda/10.0.130
--------------------------------------------------------------------------------------------------------------------

$ module load cuda/10.0.130

$ which nvcc
/apps/compilers/cuda/10.0.130/bin/nvcc

$ printenv | grep CUDA
HPC_CUDA_LIB=/apps/compilers/cuda/10.0.130/lib64
HPC_CUDA_DIR=/apps/compilers/cuda/10.0.130
HPC_CUDA_BIN=/apps/compilers/cuda/10.0.130/bin
HPC_CUDA_INC=/apps/compilers/cuda/10.0.130/include
UFRC_FAMILY_CUDA_VERSION=10.0.130

Selecting CUDA Arch Flags

When compiling with NVCC, you need to specify the Nvidia architecture that the CUDA files will be compiled for. Please refer to GPU Feature List for CUDA naming scheme sm_xy where x denotes the GPU generation and y denotes the version. The table below lists the SM flags for the three types of GPUs on HiPerGator.

SM Nvidia Cards
SM_37 Tesla K80 (No longer available)
SM_61 GeForce GTX 1080Ti
SM_75 GeForce RTX 2080Ti
SM_80 DGX A100

Sample GPU Batch Job Scripts

See the Example_SLURM-GPU-Job-Scripts page for an example.