Difference between revisions of "Nvidia CUDA Toolkit"

From UFRC
Jump to navigation Jump to search
(updated the currently available cuda versions on hipergator. removed deprecated version not available anymore.)
 
(109 intermediate revisions by 9 users not shown)
Line 1: Line 1:
[[Category:Software]]
+
[[Category:Software]][[Category:Programming]][[Category:Library]][[Category:Graphics]][[Category:GPU]]
 +
{|align=right
 +
  |__TOC__
 +
  |}
 
{|<!--CONFIGURATION: REQUIRED-->
 
{|<!--CONFIGURATION: REQUIRED-->
 
|{{#vardefine:app|cuda}}
 
|{{#vardefine:app|cuda}}
Line 6: Line 9:
 
|{{#vardefine:conf|}}          <!--CONFIGURATION-->
 
|{{#vardefine:conf|}}          <!--CONFIGURATION-->
 
|{{#vardefine:exe|1}}            <!--ADDITIONAL INFO-->
 
|{{#vardefine:exe|1}}            <!--ADDITIONAL INFO-->
|{{#vardefine:pbs|1}}            <!--PBS SCRIPTS-->
+
|{{#vardefine:pbs|1}}            <!--JOB SCRIPTS-->
 
|{{#vardefine:policy|1}}        <!--POLICY-->
 
|{{#vardefine:policy|1}}        <!--POLICY-->
|{{#vardefine:testing|1}}        <!--PROFILING-->
+
|{{#vardefine:testing|}}        <!--PROFILING-->
 
|{{#vardefine:faq|}}            <!--FAQ-->
 
|{{#vardefine:faq|}}            <!--FAQ-->
 
|{{#vardefine:citation|}}      <!--CITATION-->
 
|{{#vardefine:citation|}}      <!--CITATION-->
Line 18: Line 21:
 
{{App_Description|app={{#var:app}}|url={{#var:url}}|name={{#var:app}}}}|}}
 
{{App_Description|app={{#var:app}}|url={{#var:url}}|name={{#var:app}}}}|}}
 
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding broad-ranging uses for GPU computing with CUDA.
 
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding broad-ranging uses for GPU computing with CUDA.
 +
 +
See also: [https://help.rc.ufl.edu/doc/GPU_Access GPU Access]
 
<!--Modules-->
 
<!--Modules-->
==Required Modules==
+
==Environment Modules==
cuda
+
Use the 'module avail' command after loading a cuda environment module to see the available module trees or see which compiler and openmpi modules require the cuda module to be loaded.
 +
 
 
==System Variables==
 
==System Variables==
* HPC_{{#uppercase:{{#var:app}}}}_DIR
+
* HPC_{{uc:{{#var:app}}}}_DIR
* HPC_{{#uppercase:{{#var:app}}}}_BIN
+
* HPC_{{uc:{{#var:app}}}}_BIN
* HPC_{{#uppercase:{{#var:app}}}}_INC
+
* HPC_{{uc:{{#var:app}}}}_INC
* HPC_{{#uppercase:{{#var:app}}}}_LIB
+
* HPC_{{uc:{{#var:app}}}}_LIB
 
<!--Configuration-->
 
<!--Configuration-->
 
{{#if: {{#var: conf}}|==Configuration==
 
{{#if: {{#var: conf}}|==Configuration==
Line 31: Line 37:
 
|}}
 
|}}
 
<!--Run-->
 
<!--Run-->
==Nvidia GPUs==
+
==Program Development==
Research Computing has a significant investment in GPU-enabled servers. Each supports from two to eight Nvidia GPUs that range from the earlier S1070s to the more recent Kepler K20s (see table below).
 
 
 
{| border=1
 
!GPU!!Quantity!!Host Architecture!!Host Memory!!Host Interconnect!!Notes
 
|-
 
|S1070||8||Intel E5462|| 16 GB||DDR IB||
 
|-
 
|}
 
 
 
{| border=1
 
!Servers!!Processor!!Cores!!Memory!!GPUs!!IB!!Notes
 
|-
 
|4||1 Intel E5462 (2.8 GHz)||4||16 GB||2||DDR||1
 
|-
 
|4||1 Intel E5675 (3.0GHz)||6||24 GB||2||QDR|| 3,4
 
|-
 
|10||2 Intel E5-2643 (3.3 GHz)||8||64 GB||4||FDR|| 2
 
|-
 
|16||2 AMD Opteron 6220 (3.0 GHz)||16||32 GB||2||QDR|| 2
 
|-
 
|1||2 Intel E5620 (2.4GHz)||8||24 GB||8||N/A|| 3
 
|-
 
|}
 
# S1070 GPUs, 4GB Device RAM
 
# M2090 GPUs, 6GB Device RAM
 
# M2070 GPUs, 6GB Device RAM
 
# K20c  GPUs, 5GB Device RAM
 
 
 
<!--PBS scripts-->
 
{{#if: {{#var: pbs}}|==PBS Script Examples==
 
See the [[{{PAGENAME}}_PBS]] page for {{#var: app}} PBS script examples.
 
|}}
 
<!--Policy-->
 
{{#if: {{#var: policy}}|==Usage Policy==
 
===Interactive Use===
 
 
 
If you need interactive access to a gpu for development and testing you may do so by requesting an interactive session through the batch system. 
 
 
 
In order to gain interactive access to a GPU server you should run similar to the one that follows.
 
 
 
<pre>
 
qsub -I -l nodes=1:gpus=1:tesla,walltime=01:00:00 -q gpu
 
</pre>
 
 
 
To gain access to one of the Fermi-class GPUs, you can make a similar request but specify the "fermi" attribute in your resource request as below.
 
 
 
<pre>
 
qsub -I -l nodes=1:gpus=1:fermi,walltime=01:00:00 -q gpu
 
</pre>
 
 
 
If a gpu is available, you will get a prompt on one of the nodes within a minute or two.  Otherwise, you will have to wait or try another time.  If you choose to wait, you will be connected when a gpu is available.    The default walltime limit for the gpu queue is 10 minutes.  You should request the amount of time you need but be sure to log out and end your session when you are finished so that the GPU will be available to others.
 
 
 
If your work needs both GPUs attached to the same node, you would run the following command instead.
 
 
 
<pre>
 
qsub -I -l nodes=1:gpus=2,walltime=01:00:00 -q gpu
 
</pre>
 
 
 
If you need to request a particular machine, say ''tesla1'', you would use the following qsub command.
 
 
 
<pre>
 
qsub -I -l nodes=tesla1:gpus=1,walltime=01:00:00 -q gpu
 
</pre>
 
===Batch Jobs===
 
 
 
The process is much the same for batch jobs.  To access a node with an M2090, you can add the following to your submission script.
 
 
 
<pre>
 
#PBS -q gpu
 
#PBS -l nodes=1:gpus=1:M2090
 
#PBS -l walltime=1:00:00
 
</pre>
 
 
 
To access a node with an M2070 GPU, you can add the following to your submission script.
 
  
 +
===Environment===
 +
For CUDA development please load the "cuda" module.  Doing so will ensure that your environment is set up correctly for the use of the CUDA compiler, header files, and libraries. The cuda versions below are currently supported on hipergator.
 +
<div class="mw-collapsible mw-collapsed" style="width:70%; padding: 5px; border: 1px solid gray;">
 +
''Expand to view example of loading/using cuda.''
 +
<div class="mw-collapsible-content" style="padding: 5px;">
 
<pre>
 
<pre>
#PBS -q gpu
 
#PBS -l nodes=1:gpus=1:m2070
 
#PBS -l walltime=1:00:00
 
</pre>
 
===Exclusive Mode===
 
The GPUs are configured to run in '''exclusive''' mode.  This means that the gpu driver will only allow one process at a time to access the GPU.  If GPU 0 is in use and your application tries to use it, it will simply block.  If your application does not call cudaSetDevice(), the CUDA runtime should assign it to a free GPU.  Since everyone will be accessing the GPUs through the batch system, there should be no over-subscription of the GPUs.
 
 
|}}
 
<!--Performance-->
 
{{#if: {{#var: testing}}|==Performance==
 
==Environment==
 
For CUDA development please load the "cuda" module.  Doing so will ensure that your environment is set up correctly for the use of the CUDA compiler, header files, and libraries.
 
 
<source lang=bash>
 
 
$ module spider cuda
 
$ module spider cuda
Rebuilding cache, please wait ... (not written to file) done
+
-------------------------------------------------------------
 
+
cuda:
 +
-------------------------------------------------------------
 
     Description:
 
     Description:
 
       NVIDIA CUDA Toolkit
 
       NVIDIA CUDA Toolkit
  
 
     Versions:
 
     Versions:
         cuda/4.2
+
         cuda/10.0.130
         cuda/5.5
+
        cuda/11.0.207
 +
        cuda/11.1.0
 +
        cuda/11.4.3
 +
        cuda/11.6
 +
        cuda/12.2.0
 +
         cuda/12.2.2
 +
        cuda/12.4.1
 +
 
 +
--------------------------------------------------------------------------------------------------------------------
 +
  For detailed information about a specific "cuda" module (including how to load the modules) use the module full name.
 +
  For example:
  
$ module load cuda/5.5
+
    $ module spider cuda/10.0.130
 +
--------------------------------------------------------------------------------------------------------------------
 +
 
 +
$ module load cuda/10.0.130
  
 
$ which nvcc
 
$ which nvcc
/opt/cuda/5.5/bin/nvcc
+
/apps/compilers/cuda/10.0.130/bin/nvcc
  
 
$ printenv | grep CUDA
 
$ printenv | grep CUDA
HPC_CUDA_LIB=/opt/cuda/5.5/lib64
+
HPC_CUDA_LIB=/apps/compilers/cuda/10.0.130/lib64
HPC_CUDA_DIR=/opt/cuda/5.5
+
HPC_CUDA_DIR=/apps/compilers/cuda/10.0.130
HPC_CUDA_BIN=/opt/cuda/5.5/bin
+
HPC_CUDA_BIN=/apps/compilers/cuda/10.0.130/bin
HPC_CUDA_INC=/opt/cuda/5.5/include
+
HPC_CUDA_INC=/apps/compilers/cuda/10.0.130/include
</source>
+
UFRC_FAMILY_CUDA_VERSION=10.0.130
 +
</pre>
 +
</div>
 +
</div>
 +
===Selecting CUDA Arch Flags===
 +
When compiling with NVCC, you need to specify the Nvidia architecture that the CUDA files will be compiled for. Please refer to [https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-feature-list GPU Feature List] for CUDA naming scheme sm_xy where x denotes the GPU generation and y denotes the version. The table below lists the SM flags for the three types of GPUs on HiPerGator.
  
==Example: CUBLAS vs. Optimized BLAS==
+
{| class="wikitable"
 +
|-
 +
! SM !! Nvidia Cards
 +
|-
 +
| SM_37 || Tesla K80 (No longer available)
 +
|-
 +
| SM_61 || GeForce GTX 1080Ti
 +
|-
 +
| SM_75|| GeForce RTX 2080Ti
 +
|-
 +
| SM_80 || DGX A100
 +
|}
  
Note that double-precision linear algebra is a less than ideal application for the GPUs.  Still, it is a functional example of using one of the available CUDA runtime libraries.
+
==Sample GPU Batch Job Scripts==
  
===cuda_bm.c===
 
{{#fileAnchor: cuda_bm.c}}
 
Download raw source of the [{{#fileLink: cuda_bm.c}} cuda_bm.c]
 
<source lang=c>
 
#include <stdio.h>
 
#include <stdlib.h>
 
#include <mkl.h>
 
#include <math.h>
 
#include <time.h>
 
#include <cublas.h>
 
  
void resuse(char *str);
+
See the [[Example_SLURM-GPU-Job-Scripts]] page for an example.
  
double timeDiff( struct timespec *t1, struct timespec *t2)
+
<!--|}}-->
{
 
  double T1, T2;
 
  T2 = (double)t2->tv_sec + (double)t2->tv_nsec / 1.0e9;
 
  T1 = (double)t1->tv_sec - (double)t1->tv_nsec / 1.0e9;
 
  return(T2 - T1);
 
}
 
 
 
main()
 
{
 
  int      dim = 9100;
 
  int      i,j,k;
 
  int      status;
 
 
 
  double    *psa, *psb, *psc;
 
  double    *sap, *sbp, *scp;
 
  double    *pda, *pdb, *pdc;
 
  double    *dap, *dbp, *dcp;
 
 
 
  double alpha  = 1.0;
 
  double beta    = 0.0;
 
  double gflops  = 0.0;
 
  float  deltaT  = 0.0;
 
  double gflopCnt = 2.0 * dim * dim * dim / 1.0e9;
 
  struct timespec t1;
 
  struct timespec t2;
 
 
 
  int      ptime();
 
 
 
  pda = NULL;
 
  pdb = NULL;
 
  pdc = NULL;
 
  psa = (double *) malloc(dim * dim * sizeof(*psa) );
 
  psb = (double *) malloc(dim * dim * sizeof(*psb) );
 
  psc = (double *) malloc(dim * dim * sizeof(*psc) );
 
 
 
  printf("Initializing Matrices...");
 
  clock_gettime(CLOCK_MONOTONIC, &t1);
 
  sap = psa;
 
  sbp = psb;
 
  scp = psc;
 
  for (i = 0; i < dim; i++)
 
    for (j = 0; j < dim; j++) {
 
      *sap++ = 1.0;
 
      *sbp++ = 1.0;
 
      *scp++ = 0.0;
 
    }
 
  clock_gettime(CLOCK_MONOTONIC, &t2);
 
  deltaT = timeDiff(&t1, &t2);
 
  printf("Done.    Elapsed Time = %6.4f secs\n", deltaT);
 
  fflush(stdout);
 
 
 
  printf("Starting parallel DGEMM...");
 
  fflush(stdout);
 
  clock_gettime(CLOCK_MONOTONIC, &t1);
 
  cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, dim, dim, dim, alpha, psa, dim, psb, dim, beta, psc, dim);
 
  clock_gettime(CLOCK_MONOTONIC, &t2);
 
  deltaT = timeDiff(&t1, &t2);
 
  printf("Done.  Elapsed Time = %6.4f secs\n", deltaT);
 
  printf("                                ");
 
  printf("GFlOP Rate  = %8.4f\n", gflopCnt/deltaT);
 
 
 
  if ( (float) dim - psc[0] > 1.0e-5  ||
 
      (float) dim - psc[dim*dim-1] > 1.0e-5 ) {
 
      printf("Error: Incorrect Results!\n");
 
      printf("C[%2d,%2d] = %10.4f\n", 1,1,psc[0]);
 
      printf("C[%2d,%2d] = %10.4f\n", dim,dim,psc[dim*dim-1]);
 
  }
 
 
 
  /* Initialize CUDA */
 
  printf("Initializing CUDA...");
 
  status = cublasInit();
 
  if (status != CUBLAS_STATUS_SUCCESS) {
 
      fprintf (stderr, "!!!! CUBLAS initialization error\n");
 
      return EXIT_FAILURE;
 
  }
 
  printf("Done.\n");
 
 
 
  /* Re-initialize the matrices */
 
  printf("Re-initializing Matrices...");
 
  clock_gettime(CLOCK_MONOTONIC, &t1);
 
  sap = psa;
 
  sbp = psb;
 
  scp = psc;
 
  for (i = 0; i < dim; i++) {
 
    for (j = 0; j < dim; j++) {
 
      *sap++ = 1.0;
 
      *sbp++ = 1.0;
 
      *scp++ = 0.0;
 
    }
 
  }
 
  clock_gettime(CLOCK_MONOTONIC, &t2);
 
  deltaT = timeDiff(&t1, &t2);
 
  printf("Done.  Elapsed Time = %6.4f secs\n", deltaT);
 
  fflush(stdout);
 
 
 
  /* Allocate device memory for the matrices */
 
  printf("Starting CUDA DGEMM...");
 
  clock_gettime(CLOCK_MONOTONIC, &t1);
 
 
 
  status = cublasAlloc(dim*dim, sizeof(*pda), (void**) &pda);
 
  if (status != CUBLAS_STATUS_SUCCESS) {
 
      fprintf (stderr, "!!!! device memory allocation error (A)\n");
 
      return EXIT_FAILURE;
 
  }
 
 
 
  status = cublasAlloc(dim*dim, sizeof(*pdb), (void**) &pdb);
 
  if (status != CUBLAS_STATUS_SUCCESS) {
 
      fprintf (stderr, "!!!! device memory allocation error (B)\n");
 
      return EXIT_FAILURE;
 
  }
 
 
 
  status = cublasAlloc(dim*dim, sizeof(*pdc), (void**) &pdc);
 
  if (status != CUBLAS_STATUS_SUCCESS) {
 
      fprintf (stderr, "!!!! device memory allocation error (C)\n");
 
      return EXIT_FAILURE;
 
  }
 
 
 
  /* Initialize the device matrices with the host matrices */
 
  status = cublasSetVector(dim*dim, sizeof(*psa), psa, 1, pda, 1);
 
  if (status != CUBLAS_STATUS_SUCCESS) {
 
      fprintf (stderr, "!!!! device access error (write A)\n");
 
      return EXIT_FAILURE;
 
  }
 
 
 
  status = cublasSetVector(dim*dim, sizeof(*pdb), psb, 1, pdb, 1);
 
  if (status != CUBLAS_STATUS_SUCCESS) {
 
      fprintf (stderr, "!!!! device access error (write B)\n");
 
      return EXIT_FAILURE;
 
  }
 
 
 
  status = cublasSetVector(dim*dim, sizeof(*psc), psc, 1, pdc, 1);
 
  if (status != CUBLAS_STATUS_SUCCESS) {
 
      fprintf (stderr, "!!!! device access error (write C)\n");
 
      return EXIT_FAILURE;
 
  }
 
 
 
  /* Clear last error */
 
  cublasGetError();
 
 
 
  /* Performs operation using cublas */
 
  cublasDgemm('n', 'n', dim, dim, dim, alpha, pda, dim, pdb, dim, beta, pdc, dim);
 
  status = cublasGetError();
 
  if (status != CUBLAS_STATUS_SUCCESS) {
 
      fprintf (stderr, "!!!! kernel execution error.\n");
 
      return EXIT_FAILURE;
 
  }
 
 
 
  /* Read the result back */
 
  status = cublasGetVector(dim*dim, sizeof(*psc), pdc, 1, psc, 1);
 
  if (status != CUBLAS_STATUS_SUCCESS) {
 
      fprintf (stderr, "!!!! device access error (read C)\n");
 
      return EXIT_FAILURE;
 
  }
 
  clock_gettime(CLOCK_MONOTONIC, &t2);
 
  deltaT = timeDiff(&t1, &t2);
 
  printf("Done.      Elapsed Time = %6.4f secs\n", deltaT);
 
  printf("                                  ");
 
  printf("GFlOP Rate  = %8.4f\n", gflopCnt/deltaT);
 
 
 
  if ( (float) dim - psc[0] > 1.0e-||
 
      (float) dim - psc[dim*dim-1] > 1.0e-5 ) {
 
      printf("Error: Incorrect Results!\n");
 
      printf("C[%2d,%2d] = %10.4f\n", 1,1,psc[0]);
 
      printf("C[%2d,%2d] = %10.4f\n", dim,dim,psc[dim*dim-1]);
 
  }
 
}
 
 
 
</source>
 
 
 
===resuse.c===
 
 
 
{{#fileAnchor: resuse.c}}
 
Download raw source of the [{{#fileLink: resuse.c}} resuse.c]
 
<source lang=c>
 
/*---------------------------------------------------------------------------*
 
*                      resuse.c                                            *
 
*                                                                          *
 
* resuse_(desc)                                                              *
 
* char *desc;                                                              *
 
*---------------------------------------------------------------------------*
 
* This routine makes use of the getrusage system call to collect and        *
 
* display resource utilization from one point in a program to another.      *
 
* Thus, it works somewhat like a stopwatch in the since that the first call *
 
* initializes, or starts, the resource collection over the interval.  The  *
 
* second call stops the collection and displays the results accumulated    *
 
* since the previous call.  This means, of course, that two calls are      *
 
* required for each section of code to be monitored.                        *
 
*
 
* The underscore at the end of the routine name is there so that the routine*
 
* may be called as an integer valued FORTRAN function name RESUSE(), under  *
 
* both the SunOS and Ultrix f77 compilers.  AIX inter-language calling      *
 
* conventions are different so the routine must be referenced as RESUSE_()  *
 
* under AIX (RISC/6000) FORTRAN (xlf).
 
*
 
* From a FORTRAN routine:
 
*
 
* INT = RESUSE("Some String")
 
*
 
*    fortran code to be timed
 
*
 
* INT = RESUSE("Some String")
 
*
 
* Just ignore the returned value.
 
*---------------------------------------------------------------------------*/
 
 
 
#include <sys/time.h>
 
#include <sys/resource.h>
 
 
 
static int first_call = 1;
 
 
 
static struct rusage initial;
 
 
 
void resuse(str)
 
char *str;
 
{
 
  int    pgminor, pgmajor, nswap, nvcsw, nivcsw;
 
  int    inblock, oublock;
 
  struct  rusage final;
 
  float  usr, sys, secs;
 
 
 
  getrusage(RUSAGE_SELF, &final);
 
 
 
  if ( ! first_call )
 
  {
 
    secs = final.ru_utime.tv_sec + final.ru_utime.tv_usec / 1000000.0;
 
    usr  = secs;
 
    secs = initial.ru_utime.tv_sec + initial.ru_utime.tv_usec / 1000000.0;
 
    usr  = usr - secs;
 
 
 
    secs = final.ru_stime.tv_sec + final.ru_stime.tv_usec / 1000000.0;
 
    sys  = secs;
 
    secs = initial.ru_stime.tv_sec + initial.ru_stime.tv_usec / 1000000.0;
 
    sys  = sys - secs;
 
 
 
    pgminor = final.ru_minflt  - initial.ru_minflt;
 
    pgmajor = final.ru_majflt  - initial.ru_majflt;
 
    nswap  = final.ru_nswap  - initial.ru_nswap;
 
    inblock = final.ru_inblock - initial.ru_inblock;
 
    oublock = final.ru_oublock - initial.ru_oublock;
 
    nvcsw  = final.ru_nvcsw  - initial.ru_nvcsw ;
 
    nivcsw  = final.ru_nivcsw  - initial.ru_nivcsw ;
 
 
 
    printf("=============================================================\n");
 
    printf("%s: Resource Usage Data...\n", str);
 
    printf("-------------------------------------------------------------\n");
 
    printf("User Time  (secs)          : %10.3f\n", usr);
 
    printf("System Time (secs)          : %10.3f\n", sys);
 
    printf("Total Time  (secs)          : %10.3f\n", usr + sys);
 
    printf("Minor Page Faults          : %10d\n", pgminor);
 
    printf("Major Page Faults          : %10d\n", pgmajor);
 
    printf("Swap Count                  : %10d\n", nswap);
 
    printf("Voluntary Context Switches  : %10d\n", nvcsw);
 
    printf("Involuntary Context Switches: %10d\n", nivcsw);
 
    printf("Block Input Operations      : %10d\n", inblock);
 
    printf("Block Output Operations    : %10d\n", oublock);
 
    printf("=============================================================\n");
 
 
 
  }
 
  else
 
  {
 
    printf("=============================================================\n");
 
    printf("%s: Collecting Resource Usage Data\n", str);
 
    printf("=============================================================\n");
 
  }
 
 
 
  first_call = !first_call;
 
  initial = final;
 
 
 
  return;
 
}
 
</source>
 
 
 
===Makefile for Building cuda_bm===
 
 
 
{{#fileAnchor: Makefile}}
 
Download raw source of the [{{#fileLink: Makefile}} Makefile]
 
 
 
<source lang=make>
 
#
 
# Makefile
 
#
 
CC          = icc
 
CFLAGS      = -O3 -openmp
 
 
 
MKL_INCS    = -I$(HPC_MKL_INC)
 
MKL_LIBS    = -L$(HPC_MKL_LIB) -lmkl_intel_lp64 -lmkl_sequential -lmkl_core
 
MKL_MP_LIBS = -L$(HPC_MKL_LIB) -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core
 
 
 
CUDA_INCS  = -I$(HPC_CUDA_INC)
 
CUDA_LIBS  = -L$(HPC_CUDA_LIB) -lcublas
 
 
 
LIBS        = $(MKL_MP_LIBS) $(CUDA_LIBS) -lpthread -lrt
 
INCS        = $(MKL_INCS) $(CUDA_INCS)
 
 
 
bm: bm.o ptime.o resuse.o
 
$(CC) $(CFLAGS)  -o bm bm.o ptime.o resuse.o $(LIBS)
 
 
 
cuda_bm: cuda_bm.c resuse.o
 
$(CC) $(CFLAGS) $(INCS) -o cuda_bm cuda_bm.c resuse.o $(LIBS)
 
 
 
cuda_sp_bm: cuda_sp_bm.c resuse.o
 
$(CC) $(CFLAGS) $(INCS) -o cuda_sp_bm cuda_sp_bm.c resuse.o $(LIBS)
 
 
 
clean:
 
rm -f *.o core.* bm cuda_bm
 
</source>
 
 
 
=== Compiling and Linking ===
 
 
 
Download the above three files into a single directory.  Then type:
 
 
 
<pre>
 
[taylor@c11a-s15 Bench]$ module load intel/2013
 
[taylor@c11a-s15 Bench]$ module load cuda/5.5
 
[taylor@c11a-s15 Bench]$ make clean
 
rm -f *.o core.* bm cuda_bm
 
 
 
[taylor@c11a-s15 Bench]$ make cuda_bm
 
icc -O3 -openmp -I/opt/intel/composer_xe_2013_sp1.0.080/mkl/include  -c -o resuse.o resuse.c
 
icc -O3 -openmp -I/opt/intel/composer_xe_2013_sp1.0.080/mkl/include -I/opt/cuda/5.5/include -I/opt/intel/composer_xe_2013_sp1.0.080/mkl/include -o cuda_bm cuda_bm.c resuse.o -L/opt/cuda/5.5/lib64 -lcublas -L/opt/intel/composer_xe_2013_sp1.0.080/mkl/lib/intel64 -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -lpthread -lrt
 
</pre>
 
 
 
=== Output ===
 
# Host: Single, Hex-Core Intel 5675 @ 3.0 GHz
 
# GPU: Kepler K20c
 
 
 
<pre>
 
$ export OMP_NUM_THREADS=4
 
$ ./cuda_bm
 
Initializing Matrices...Done.    Elapsed Time = 2.3768 secs
 
Starting parallel DGEMM...Done.  Elapsed Time = 33.2302 secs
 
                                GFlOP Rate  =  45.3546
 
Initializing CUDA...Done.
 
Re-initializing Matrices...Done.  Elapsed Time = 2.1733 secs
 
Starting CUDA DGEMM...Done.      Elapsed Time = 2.3522 secs
 
                                  GFlOP Rate  = 640.7458
 
 
 
</pre>
 
|}}
 
  
 
<!--Faq-->
 
<!--Faq-->
Line 513: Line 117:
 
{{#if: {{#var: installation}}|==Installation==
 
{{#if: {{#var: installation}}|==Installation==
 
See the [[{{PAGENAME}}_Install]] page for {{#var: app}} installation notes.|}}
 
See the [[{{PAGENAME}}_Install]] page for {{#var: app}} installation notes.|}}
<!--Turn the Table of Contents and Edit paragraph links ON/OFF-->
+
<!--Turn the Table of Contents and Edit paragraph links ON/OFF
 
__NOTOC____NOEDITSECTION__
 
__NOTOC____NOEDITSECTION__
 +
-->

Latest revision as of 13:22, 31 May 2024

Description

cuda website  
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs sold to date, software developers, scientists and researchers are finding broad-ranging uses for GPU computing with CUDA.

See also: GPU Access

Environment Modules

Use the 'module avail' command after loading a cuda environment module to see the available module trees or see which compiler and openmpi modules require the cuda module to be loaded.

System Variables

  • HPC_CUDA_DIR
  • HPC_CUDA_BIN
  • HPC_CUDA_INC
  • HPC_CUDA_LIB

Program Development

Environment

For CUDA development please load the "cuda" module. Doing so will ensure that your environment is set up correctly for the use of the CUDA compiler, header files, and libraries. The cuda versions below are currently supported on hipergator.

Expand to view example of loading/using cuda.

$ module spider cuda
-------------------------------------------------------------
cuda:
-------------------------------------------------------------
    Description:
      NVIDIA CUDA Toolkit

     Versions:
        cuda/10.0.130
        cuda/11.0.207
        cuda/11.1.0
        cuda/11.4.3
        cuda/11.6
        cuda/12.2.0
        cuda/12.2.2
        cuda/12.4.1

--------------------------------------------------------------------------------------------------------------------
  For detailed information about a specific "cuda" module (including how to load the modules) use the module full name.
  For example:

     $ module spider cuda/10.0.130
--------------------------------------------------------------------------------------------------------------------

$ module load cuda/10.0.130

$ which nvcc
/apps/compilers/cuda/10.0.130/bin/nvcc

$ printenv | grep CUDA
HPC_CUDA_LIB=/apps/compilers/cuda/10.0.130/lib64
HPC_CUDA_DIR=/apps/compilers/cuda/10.0.130
HPC_CUDA_BIN=/apps/compilers/cuda/10.0.130/bin
HPC_CUDA_INC=/apps/compilers/cuda/10.0.130/include
UFRC_FAMILY_CUDA_VERSION=10.0.130

Selecting CUDA Arch Flags

When compiling with NVCC, you need to specify the Nvidia architecture that the CUDA files will be compiled for. Please refer to GPU Feature List for CUDA naming scheme sm_xy where x denotes the GPU generation and y denotes the version. The table below lists the SM flags for the three types of GPUs on HiPerGator.

SM Nvidia Cards
SM_37 Tesla K80 (No longer available)
SM_61 GeForce GTX 1080Ti
SM_75 GeForce RTX 2080Ti
SM_80 DGX A100

Sample GPU Batch Job Scripts

See the Example_SLURM-GPU-Job-Scripts page for an example.