Difference between revisions of "Khmer"

From UFRC
Jump to navigation Jump to search
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Software]][[Category:Bioinformatics]][[Category:NGS]]
+
[[Category:Software]][[Category:Biology]][[Category:NGS]]
 
{|<!--Main settings - REQUIRED-->
 
{|<!--Main settings - REQUIRED-->
 
|{{#vardefine:app|khmer}}
 
|{{#vardefine:app|khmer}}
Line 24: Line 24:
 
Use "import khmer" in your script or in an interactive python session.
 
Use "import khmer" in your script or in an interactive python session.
 
<!--Modules-->
 
<!--Modules-->
==Required Modules==
+
==Environment Modules==
[[Modules|modules documentation]]
+
Run <code>module spider {{#var:app}}</code> to find out what environment modules are available for this application.
===Serial===
 
*{{#var:app}}
 
 
==System Variables==
 
==System Variables==
* HPC_{{#uppercase:{{#var:app}}}}_DIR
+
* HPC_{{uc:{{#var:app}}}}_DIR - installation directory
 
* HPC_KHMER_BIN
 
* HPC_KHMER_BIN
 
* HPC_KHMER_LIB
 
* HPC_KHMER_LIB
Line 50: Line 48:
  
 
If you use any of khmer's published scientific methods, you should *also* cite the relevant paper(s), as directed below.
 
If you use any of khmer's published scientific methods, you should *also* cite the relevant paper(s), as directed below.
 
+
<div class="mw-collapsible mw-collapsed" style="width:70%; padding: 5px; border: 1px solid gray;">
 +
''Expand to view citation instructions.''
 +
<div class="mw-collapsible-content" style="padding: 5px;">
 
* Graph partitioning and/or compressible graph representation
 
* Graph partitioning and/or compressible graph representation
 
: The load-graph.py, partition-graph.py, find-knots.py, load-graph.py, and partition-graph.py scripts are part of the compressible graph representation and partitioning algorithms described in:
 
: The load-graph.py, partition-graph.py, find-knots.py, load-graph.py, and partition-graph.py scripts are part of the compressible graph representation and partitioning algorithms described in:
Line 69: Line 69:
 
:: arXiv:1309.2975 [q-bio.GN]
 
:: arXiv:1309.2975 [q-bio.GN]
 
:: http://arxiv.org/abs/1309.2975
 
:: http://arxiv.org/abs/1309.2975
 
+
</div>
 +
</div>
 
|}}
 
|}}
=Validation=
 
* Validated 4/5/2018
 

Latest revision as of 17:01, 14 December 2022

Description

khmer website  

Khmer - python scripts for k-mer counting, filtering and graph traversal.

Available scripts: abundance-dist.py, count-median.py, do-partition.sh, filter-abund.py, find-knots.py, load-into-counting.py, merge-partitions.py, normalize-by-median.py, partition-graph.py, annotate-partitions.py, count-overlap.py, extract-partitions.py, filter-stoptags.py, load-graph.py, make-initial-stoptags.py, normalize-by-kadian.py, normalize-by-min.py

Use "import khmer" in your script or in an interactive python session.

Environment Modules

Run module spider khmer to find out what environment modules are available for this application.

System Variables

  • HPC_KHMER_DIR - installation directory
  • HPC_KHMER_BIN
  • HPC_KHMER_LIB




Citation

If you use the khmer software, you must cite:

Crusoe et al., The khmer software package: enabling efficient sequence analysis. 2014. doi: 10.6084/m9.figshare.979190

If you use any of khmer's published scientific methods, you should *also* cite the relevant paper(s), as directed below.

Expand to view citation instructions.

  • Graph partitioning and/or compressible graph representation
The load-graph.py, partition-graph.py, find-knots.py, load-graph.py, and partition-graph.py scripts are part of the compressible graph representation and partitioning algorithms described in:
Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13272-7
doi: 10.1073/pnas.1121464109
PMID: 22847406
  • Digital normalization
The normalize-by-median.py and count-median.py scripts are part of the digital normalization algorithm, described in:
A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data
Brown CT, Howe AC, Zhang Q, Pyrkosz AB, Brom TH
arXiv:1203.4802 [q-bio.GN]
http://arxiv.org/abs/1203.4802
  • K-mer counting
The abundance-dist.py, filter-abund.py, and load-into-counting.py scripts implement the probabilistic k-mer counting described in:
These are not the k-mers you are looking for: efficient online k-mer counting using a probabilistic data structure
Zhang Q, Pell J, Canino-Koning R, Howe AC, Brown CT.
arXiv:1309.2975 [q-bio.GN]
http://arxiv.org/abs/1309.2975