Difference between revisions of "ADMB"

From UFRC
Jump to navigation Jump to search
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:Software]]
+
[[Category:Software]][[Category:Math]][[Category:Modeling]]
 
{|<!--CONFIGURATION: REQUIRED-->
 
{|<!--CONFIGURATION: REQUIRED-->
 
|{{#vardefine:app|admb}}
 
|{{#vardefine:app|admb}}
Line 22: Line 22:
 
AD Model Builder, or ADMB, is a C++ application which implements AD using specialized classes and operator overloading.
 
AD Model Builder, or ADMB, is a C++ application which implements AD using specialized classes and operator overloading.
 
<!--Modules-->
 
<!--Modules-->
==Required Modules==
+
==Environment Modules==
===Serial===
+
Run <code>module spider {{#var:app}}</code> to find out what environment modules are available for this application.
* gcc/5.2.0
 
* {{#var:app}}
 
<!--
 
===Parallel (OpenMP)===
 
* intel
 
* {{#var:app}}
 
===Parallel (MPI)===
 
* intel
 
* openmpi
 
* {{#var:app}}
 
-->
 
 
==System Variables==
 
==System Variables==
* HPC_{{#uppercase:{{#var:app}}}}_DIR - installation directory
+
* HPC_{{uc:{{#var:app}}}}_DIR - installation directory
 
<!--Configuration-->
 
<!--Configuration-->
 
{{#if: {{#var: conf}}|==Configuration==
 
{{#if: {{#var: conf}}|==Configuration==

Latest revision as of 20:49, 11 August 2022

Description

admb website  

The ADMB project supports the application of automatic differentiation (AD) for solutions to non-linear statistical modeling and optimization problems.

AD Model Builder, or ADMB, is a C++ application which implements AD using specialized classes and operator overloading.

Environment Modules

Run module spider admb to find out what environment modules are available for this application.

System Variables

  • HPC_ADMB_DIR - installation directory




Citation

If you publish research that uses admb you have to cite it as follows:

Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., and Sibert, J. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-249.